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Abstract 5'%0¢o3, 6'°C and ¥’Sr/*®Sr measurements were
performed on tooth enamel of several species to gain informa-
tion on the diet and mobility of herbivorous large mammals
from Gratkorn (Austria; late Sarmatian sensu stricto; 12.2—
12.0 Ma). Except for the tragulid Dorcatherium naui, which
was most likely frugivorous to a certain degree, the mean
values and the total ranges of 5'°C and 5'%0 of the large
mammal taxa are typical for an exclusively C; vegetation diet
and point to predominantly browsing in mesic/woodland envi-
ronments. Occupation of different ecological niches is indicated
by variation in 5'®0 and 5'*C among the taxa, and could be
shown to be typical for the species by comparison with other
Miocene localities from different areas and ages. The small
moschid Micromeryx flourensianus might have occasionally
fed on fruits. The cervid Euprox furcatus represents a typical
subcanopy browsing taxon. The proboscidean Deinotherium
levius vel giganteum browsed on canopy plants in the higher
parts of an exclusively C; vegetation as did the bovid
Tethytragus sp.. Generally higher values for 5'%0 and 5'°C of
Lartetotherium sansaniense indicate feeding in a more open
environment. Different ecological niches can be reconstructed
for the two suids. While Listriodon splendens was a browsing
taxon with a considerable input of fruits and maybe some grass
in its diet, Parachleuastochoerus steinheimensis might have
included roots. Distinct differences in *’St/**Sr values indicate
that most of the larger mammals (Deinotherium levius vel
giganteum, Parachleuastochoerus steinheimensis, Euprox
furcatus, Lartetotherium sansaniense and to a minor degree
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maybe Listriodon splendens) were not permanent residents of
the area around Gratkorn but rather inhabited a wider area, most
likely including the Styrian Basin and the higher altitudes of the
Eastern Alps’ palaeozoic basement.
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Introduction

The Gratkorn locality (St. Stefan clay pit) is located 10 km
NNW of Graz (Styria, Austria). The fossil-bearing palaeosol
of late Middle Miocene age (late Sarmatian sensu stricto;
12.2-12.0 Ma; Gross et al. 2011) houses abundant small and
large mammal fossils and is one of the richest vertebrate
localities (the richest for the Paratethys realm) of this time
period recorded so far. All mammalian fossils originate from a
single fine-grained clastic soil layer (55 cm in total thickness;
Gross et al. 2011; 2014, this issue), interpreted as a floodplain
palaeosol (Gross et al. 2011). The uniformity of the palaeosol
(without distinct soil horizons), the preservation of vertebrate
and invertebrate remains and even coprolites point to a rather
rapid accumulation and short time of soil formation (10'—
10% years; Gross et al. 2011; Havlik et al. 2014, this issue).
Alternating wet and dry periods have been reconstructed
based on lithology and fossil content (Gross et al. 2011;
2014, this issue) and on relict bedding, intense mottling, and
drab colouring in the upper part of the palaecosol. All these
features indicate an increase in hydromorphic conditions from
the lower to the upper part of the soil. Due to the fast deposi-
tion of the palaeosol and the lack of any indications for
reworking of the fossil content (flora and fauna), all the
components of the excavated assemblage, including plants
and animals, are considered to be contemporaneous and ac-
cumulated within a few decades (see also Havlik et al. 2014,
this issue for further discussion). Palaeoclimatic reconstruc-
tions based on pedogenic features and the faunal composition
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of ectothermic vertebrates indicate a semi-arid, subtropical
climate with distinct seasonality, a mean annual precipitation
(MAP) of 4864252 mm, and a mean annual temperature
(MAT) of ~15 °C (Gross et al. 2011).

Although scientific analysis of the fossil flora from the
Gratkorn locality is still in progress, it can already be said that
medium-sized hackberry trees grew frequently in the area due to
the high abundance of Celfis endocarps, especially in the upper
part of the palacosol. Besides large mammals, a quite diverse
ectothermic vertebrate fauna, a few bird remains, and a rich and
diverse small mammal fauna (for faunal lists, see Gross et al. 2011;
Bohme and Vasilyan 2014, this issue; Gohlich and Gross 2014,
this issue; Prieto et al. 2014, this issue) have been excavated at
Gratkorn. Herbivorous large mammal taxa are represented by
small body sizes of less than 10 kg (Moschidae: Micromeryx
flourensianus and ?Hispanomeryx sp.) up to large species, such
as, e.g. the proboscidean Deinotherium levius vel giganteum
(Aiglstorfer et al. 2014a, this issue), and three rhinocerotid species,
Aceratherium sp., Brachypotherium brachypus and
Lartetotherium sansaniense, which can reach more than 1000 kg
in weight (Aiglstorfer et al. 2014b, this issue). Since skeletal
material of Brachypotherium brachypus comprises only postcra-
nial elements and Aceratherium sp. is only represented by a
deciduous premolar, isotopic measurements of rhinocerotids could
be gained only for Lartetotherium sansaniense. The chalicothere
Chalicotherium goldfussi and the equid Anchitherium sp. are
further faunal elements of the Gratkom assemblage (Aiglstorfer
et al. 2014b, this issue), but could not be measured due to scarcity
of material or total lack of dental material. Suidae are represented
in Gratkorn by two species, the more bunodont
Parachleuastochoerus steinheimensis, and the more lophodont
Listriodon splendens (van der Made et al. 2014). Ruminants are
the most abundant large mammals, and are represented by the
cervid FEuprox furcatus (most frequent species), the tragulid
Dorcatherium naui (second most frequent species), the above-
mentioned two Moschidae, a large palacomerycid (which is rep-
resented only by a single bone), and by the bovid Tethytragus sp.
(so far recorded with only one individual; Aiglstorfer et al. 2014c,
this issue).

Stable isotopes as indicator for ecology
Carbon isotopes

The carbon isotope ratio (‘2C/'*C) of vertebrate fossils yields
information about the diet and ecology of animals, since
differences in isotopic compositions of diet are incorporated
into body tissues (DeNiro and Epstein 1978; Tiitken and
Vennemann 2009; Ecker et al. 2013). Dental enamel proved
to be an ideal tissue for this investigation as it is less suscep-
tible to diagenetic alteration than bone or dentine (Koch et al.
1997; Bocherens and Sen 1998; Lee-Thorp and Sponheimer
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2003; Tiitken et al. 2006; Domingo et al. 2009, 2012; Tiitken
and Vennemann 2009; Bocherens et al. 2011a).

Plant carbon isotope compositions vary due to different
photosynthetic pathways for atmospheric CO, assimilation.
While today, most trees, shrubs, and “cool-season growing”
grasses fix CO, by forming a 3-carbon molecule, therefore
termed C; plants, C,4 plants, representing most of “warm-season
growing” grasses and sedges in warm and/or more arid habitats,
fix CO; in a 4-carbon molecule (Ehleringer and Cerling 2002;
Tipple and Pagani 2007). In modern plant tissues, a different
'3C value is observed for C5 (=36 to —22 %o) and C, plants
(=17 to =9 %o; Bocherens et al. 1993; Tipple and Pagani 2007;
Domingo et al. 2012; all 5"°C and 5'0 values are reported
relative to the Vienna Pee Dee Belemnite, V-PDB, standard, if
not given otherwise). A third photosynthetic pathway, the
crassulacean acid metabolism (CAM; common in desert suc-
culents, tropical epiphytes, and aquatic plants) is characterised
by fixation of CO, at nighttime. It is rarer (6 % of terrestrial and
6 % of aquatic plants; Keeley and Rundel 2003) and often
corresponds to environments in climatically stressful condi-
tions, such as increased aridity (Tiitken 2011). Their 5'°C
values show a wider range (=30 to —11 %o) and overlap with
values for C; and C, plants (Tiitken 2011). CAM plants usually
comprise only a marginal biomass in ecosystems and do not
represent the expected food plants for the herbivorous large
mammal taxa sampled for this publication.

Herbivores incorporate the ingested plant carbon in their
mineralised skeletal and dental tissues, such as bone, dentine
and tooth enamel (DeNiro and Epstein 1978; Tiitken and
Vennemann 2009; Ecker et al. 2013). Carbonate isotope ratios
in enamel of herbivores can thus be used to reconstruct the
proportion of C3 or C,4 plants in their diet. An average
APC ameldice enrichment factor of 14.1+0.5 %o was observed
by Cerling and Harris (1999) for large ruminants (with a total
range of 12.6-14.7 %o). They stated that non-ruminant ungulates
give similar values and they did not find a significant difference
among taxa. For the sampled rhinocerotids, they observed 14.4+
1.6 %o. In an experiment with controlled diets, Passey et al. (2005)
showed that digestive physiology considerably influences the
enrichment factor as they measured a factor of 14.6+0.7 %o for
domestic cattle (ruminant digestion) and a factor of 13.340.3 %o
for pigs (non-ruminant digestion). Since it cannot be estimated
whether the digestive physiology of ruminants from Gratkorn is
comparable to modern representatives (see differences in diges-
tive physiology of modern Tragulidae and Pecora; Rossner 2007),
the average A®Cepametdice €nrichment factor of 14.1+0.5 %o after
Cerling and Harris (1999) has been applied to the herbivorous
large mammals from Gratkormn, comparable to other works deal-
ing with Miocene herbivorous large mammals (Domingo et al.
2009, 2012; Tiitken and Vennemann 2009; Merceron et al. 2013).

In modern large mammal faunas, pure C; consumers ex-
hibit a range of —22 to —8 %o, mixed feeders a range of —8 to
—3 %o, and pure C, feeders a range of =3 to +5 %o in &'>C for
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enamel (Cerling et al. 1997a, b; Domingo et al. 2012). For
pure C; feeders, Domingo et al. (2012) estimated the ranges
for the different habitats, closed canopy (—22 to —16 %o),
mesic/woodland (=16 to —11 %o) and open/arid (—11 to
—8 %o0). However, when dealing with fossil taxa, variations
of §'3C for the atmospheric CO, have to be taken into con-
sideration. Modern atmospheric CO, (8"3C cor=-8 %o) is
depleted in '*C compared with preindustrial CO, (5'*C=
—6.5%o), due to the fossil-fuel burning of '*C-rich hydrocar-
bons (Friedli et al. 1986). Tipple et al. (2010) reconstructed
variations in the §'°C value of the atmospheric CO, for the
Cenozoic based on isotopic data derived from benthic fora-
minifera. Following their measurements, a 5'°C value of
about —6 %o can be estimated for the latest Middle Miocene
CO, (12 Ma; 2 %o higher than in the modern atmosphere).
Late Middle Miocene C; feeders are thus expected to have
§'3C values ranging from —20 to —6 %o, with —20 to —14 %o
for feeding in closed canopy, —14 to —9 %o in mesic/woodland
environment, and —9 to —6 %o in more open/arid C; vegeta-
tion. Values between —6 and —1 %o and between —1 and +7 %o
are expected for mixed feeders and pure C, feeders, respec-
tively (Domingo et al. 2012).

Although the existence of C, grasses has been documented
at least for southwestern Europe since the Early Oligocene
(Urban et al. 2010), C; plants represent the dominant vegetation
in Europe during the Miocene and no noteworthy C,4 grasslands
evolved until the Late Miocene (Cerling et al. 1993; Tiitken and
Vennemann 2009). Though small amounts of C, vegetation
cannot be completely ruled out for the Miocene of Europe,
isotopic values measured on Late Miocene Hippotherium speci-
mens from Central Europe and herbivorous large mammals
from the Iberian Peninsula showed a pure C; plant diet for
these animals (Domingo et al. 2013; Tiitken et al. 2013). The
same taxa or closely related ones are known to have consumed
C4 plants when they were available (see Nelson 2007; Badgley
et al. 2008; Passey et al. 2009; Bocherens et al. 2011a).

Oxygen Isotopes

Variations in the oxygen isotope ratio (‘°0/'®0) in skeletal and
dental tissues are in equilibrium with the body water and thus
record the in vivo signal of the animal (Longinelli 1984). Oxygen
isotope values of the body water are mostly influenced by the
composition of the drinking water (meteoric water (5'°Ogpo)),
and the drinking behaviour of the animal (Longinelli 1984; Luz
et al. 1984; Kohn 1996; Kohn et al. 1996; Bocherens et al. 1996;
Tiitken et al. 2006; Levin et al. 2006; Clementz et al. 2008). While,
for example, 5'°0 values of terrestrial obligate drinkers mainly
depend on the values of the surface water, drought-tolerant species
have usually less negative values as they gain more water from
leaves, fruits, and seeds, which are more enriched in 'O (Kohn
1996; Kohn et al. 1996). Plant roots and stems usually display
similar values as meteoric water (Ttitken and Vennemann 2009).

In contrast to terrestrial animals, aquatic animals have generally
lower values in 8'%0 (Bocherens et al. 1996; Clementz et al.
2008). The 600 value of meteoric water is influenced by
climatic conditions, such as air temperature, degree of aridity
(amount of precipitation vs. evaporation), seasonality of precipita-
tion, or the trajectories of storms, as well as by geographic
conditions, for example latitude or distance from the source area
(continental effect) (Dansgaard 1964; Rozanski et al. 1993;
Higgins and MacFadden 2004; Levin et al. 2006). Thus, 'O
values preserved in fossil enamel help to reconstruct climatic
conditions as well as infer information concerning animal ecology.
Because tooth mineralisation is a progressive process, variations in
climatic conditions can be recorded along the growth axis of the
tooth and thus high crowned teeth can give information on sea-
sonal variations (Kohn 2004; MacFadden and Higgins 2004;
Nelson 2005; van Dam and Reichert 2009; Zin-Maung-Maung-
Thein et al. 2011; Tiitken et al. 2013).

The 5'80 value of the ingested water is incorporated in the
mineral phase of bones and teeth and mostly bound on phos-
phate (PO,>) and carbonate (CO5>") ions, with the greater
amount being incorporated in phosphate, as carbonate com-
prises only 2—4 wt.% of the mineral phase (Tiitken and
Vennemann 2009). While the PO4 component is less suscep-
tible to inorganic diagenetic alteration than the CO3; compo-
nent, the latter suffers less from microbially-mediated isotopic
exchange (Domingo et al. 2013). As the 5'%0 values of the
phosphate and carbonate components are correlated and exhibit
an equilibrium offset of about 8.5 %o, both are usable for recons-
truction of the in vivo signal of animals (lacumin et al. 1996).

87S1/*°Sr: Indicator of migration

In addition to §'®0 and §'°C values, the strontium isotope
composition (*’Sr/**Sr ratio) of diet and drinking water is
incorporated in the skeletal and dental tissues of animals
(Hoppe et al. 1999; Maurer et al. 2012). Since this ratio is
constant and does not change up the food chain, it reflects the
bioavailable *’Sr/*Sr in the animal’s habitat (Blum et al.
2000; Bentley 2006). This value depends on the ®’Sr/*°Sr
ratios in bioavailable strontium of the underlying bedrocks.
The latter is mainly influenced by the primary Rb concentra-
tion, respectively the Rb/Sr ratio, as well as the age of the rock
(Tiitken 2010). Thus, older and Rb-enriched bedrocks display
higher ®’St/*®Sr ratios (Bentley 2006; Tiitken 2010). Howev-
er, differences from bedrock to bioavailable ratios can be
observed for example due to residual clay minerals with
higher Rb/Sr and *’Sr/*®Sr than the underlying bedrock
(Cooke et al. 2001; Tiitken et al. 2011), complicating the
reconstruction of provenance with *’Sr/*°Sr ratios. In any case
the ratio is still related to the underlying rock, though some-
times in a more complex way (Maurer et al. 2012) and thus
still enables reconstruction of provenance or possible migra-
tion of the animal (Tiitken and Vennemann 2009; Maurer et al.
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2012). The latter is possible as tooth enamel grows progres-
sively and therefore incorporates variations in isotopic com-
position, as mentioned above. While large mammals can
undertake long-distance migrations (Hoppe et al. 1999;
Tiitken and Vennemann 2009; Maurer et al. 2012), small
mammals and invertebrates display only small individual
travel distances (Porder et al. 2003) and are thus more likely
to represent the local bioavailable ’Sr/*°Sr values. Hence,
small mammals are often used to determine the local ¥’Sr/*°Sr
ratios (see Bentley 2006 and references therein).

Institutional Abbreviations

GPIT Paldontologische Sammlung der Universitit
Tiibingen, Tiibingen, Germany
IGM Montanuniversitit Leoben, Leoben, Austria

NHMW  Naturhistorisches Museum Wien, Vienna, Austria
UMJGP  Universalmuseum Joanneum, Graz, Austria

Material

We analysed the carbonate component of 14 bulk enamel
samples of large mammal teeth (Parachleuastochoerus
steinheimensis, Listriodon splendens, Dorcatherium naui,
Euprox furcatus, Micromeryx flourensianus, Tethytragus sp.;
see Appendix 1), three bulk samples of whole small mammal
teeth (cheek teeth of Schizogalerix voesendorfensis and
Prolagus oeningensis and incisors of indeterminate small mam-
mals) and 21 serial samples of Deinotherium levius vel
giganteum and Lartetotherium sansaniense for 5"%0c0o; and
8'C. Due to scarcity of material, the second moschid
?Hispanomeryx sp. was not measured. To avoid milk suckling
and weaning signals, M3s (upper third molars) or m3s (lower
third molars) were sampled for large mammals, if possible.
Additionally, gastropods (Pseudidyla martingrossi, Limax sp.,
Pleurodonte michalkovaci, Testacella schuetti, and opercula of
indetermined gastropods), plant remains (Celtis endocarps), soil
samples (random and samples from upper and lower parts), and
a microbialite (originating from the uppermost part of the
palacosol; see Havlik et al. 2014, this issue for details) were
analysed. Strontium isotope composition (*’St/**Sr) was mea-
sured on enamel samples of Listriodon splendens,
Parachleuastochoerus steinheimensis, Dorcatherium naui,
Euprox furcatus, Tethytragus sp., Lartetotherium sansaniense,
Deinotherium levius vel giganteum, Schizogalerix
voesendorfensis, Prolagus oeningensis, Limax sp., Pleurodonte
michalkovaci, and the microbialite from Gratkorn. All material
is housed at GPIT and UMJGP.

Large mammal enamel values (5180CO3 and 613CCO3) are

compared with values from Middle Miocene localities from
Austria, Germany, and Spain.
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The following taxa were sampled for direct comparison at
the IGM, UMJGP, and NHMW (for detailed information, see
Appendix 2):

—  Dorcatherium crassum, Dorcatherium vindebonense
(tragulids), and Hoploaceratherium sp. (rhinocerotid)
from the early Middle Miocene locality of Goriach (Aus-
tria; ~14.5 Ma £+ 0.3 Ma);

—  Heteroprox larteti (cervid) and Prodeinotherium
bavaricum (deinothere) from the early Middle Miocene
locality of Seegraben (Austria; 14.8 Ma);

—  Deinotherium sp. from the late Middle Miocene localities
of Tiirkenschanze (Austria; 12.6 Ma) and Trdssing near
Gnas (Austria; 12.7-11.6 Ma);

—  Brachypotherium (?) from Trossing near Gnas;

— Deinotherium from the locality of Bruck an der
Leitha (Austria; assumably early Sarmatian; 12.7—
12.2 Ma) and from the Miocene localities of Wolfau
(Austria; early Late Miocene) and Mddling (Austria;
Miocene);

—  Brachypotherium sp. from the Miocene locality of
Eichkogel near Modling (Austria).

Furthermore, comparison data could be gained from the
literature for the following taxa and localities:

— Sandelzhausen (Germany; 15.2—15.1 Ma; from Tiitken
and Vennemann 2009): Lartetotherium sansaniense,
Heteroprox eggeri (cervid), Gomphotherium
subtapiroideum (proboscidean), Plesiaceratherium
fahlbuschi and Prosantorhinus germanicus (both
rhinocerotids);

—  Somosaguas (Spain; 14.1-13.8 Ma; from Domingo et al.
2009): Gomphotherium angustidens (proboscidean),
Conohyus simorrensis (suid), and indetermined
ruminants;

—  Steinheim a. A. (am Albuch; Germany; Middle Mio-
cene; 13.8—13.7 Ma; from Tiitken et al. 2006):
Parachleuastochoerus steinheimensis, Listriodon
splendens, Euprox vel Heteroprox, Micromeryx
flourensianus, Gomphotherium steinheimense
(proboscidean), Lartetotherium sansaniense,
Brachypotherium brachypus, Alicornops simorrensis
(rhinocerotid) and Aceratherium sp.;

— Paracuellos 5 (Spain; Middle Miocene; 13.7-13.6 Ma;
from Domingo et al. 2012): Gomphotherium angustidens,
Listriodon splendens;

— Puente de Vallecas (Spain; Middle Miocene; 13.7—
13.6 Ma; from Domingo et al. 2012): Heteroprox
moralesi (cervid);

—  Paracuellos 3 (Spain; Middle Miocene; 13.4-13.0 Ma;
from Domingo et al. 2012): Listriodon splendens and
Tethytragus langai (bovid).
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Methods

C and O isotope measurements of the carbonate component
of hydroxyapatite

Samples were obtained by hand drilling with a diamond-
tipped dental burr on Dremel 10.8 V and Emax EVOlution
and by crushing with a steel mortar and pestle. Prior to
enamel sampling, the outer surface of the teeth was abraded
by hand drilling to minimise effects of diagenetic alteration.
Invertebrate samples were optically checked for contamina-
tion and cleaned with deionized water prior to crushing.
Parts with stronger coloration and visible cracks were
avoided to minimise contamination. Isotope analysis was
done using 5-15 mg (depending on tooth size and fragility)
enamel powder. Prior to analysis of carbon and oxygen
isotopes, all enamel and dentine samples were chemically
pretreated with 2 % NaOCI (24 h) and 0.1 M Ca-Acetate
acetic acid buffer solution (24 h) in order to remove organics
and diagenetic carbonate (Bocherens et al. 1996). Soil sam-
ples, invertebrates, and microbialite were pretreated with
2 % NaOCl (24 h). Samples were rinsed with deionised
water after each chemical treatment. About 2-3 mg of
powder were used for C and O analyses and measurement
of CaCOs; content (wt. %; = 10 %). This was performed at
70 °C with a Gasbench II connected to a Finnigan MAT 252 gas
mass spectrometer, at the Department of Geosciences of the
University of Tiibingen (Germany). The measured O and C
isotopic compositions were calibrated using the standards NBS-
18 (6'%0=-22.96 %o, 5'*C=—5.00 %o V-PDB) and the NBS-19
(6" 0=-2.20 %o, 5"*C=1.95 %o V-PDB), with a reproducibility
of £0.1 %o (8"°C) and £0.2 %o (5'°0). Following Bocherens
et al. (2011b), isotopic measurements are expressed as & (delta)
values in %o, as follows: 0* X=(Rsample/Rstandard—1)x 1,000,
where X is C or O and Y is the mass number 13 or 18, and R is
the isotopic ratio '*C/**C and '30/'°0, respectively. The & values
are quoted in reference to international standards: Vienna Pee
Dee Belemnite (V-PDB) for carbon and oxygen, furthermore, for
oxygen Vienna Standard Mean Ocean Water (V-SMOW). In
general, if not noted otherwise, V-PDB values are used. If 5'%0
values measured in V-PDB were converted to V-SMOW, this
was accomplished using the following formula: 6'%0
(V-SMOW)=[4"%0 (V-PDB)x 1.03086]+30.86.

Due to the small number of samples, maximum and mini-
mum values are given in figures instead of standard deviations.
Accordingly, to allow comparison, literature data are plotted with
mean values and total ranges instead of standard deviations.

87S1/*°Sr of the carbonate in the hydroxyapatite
A representative amount of the samples analysed for C and O was

selected for *Sr/*°Sr analysis. Furthermore, three samples of each
of the serially sampled teeth of Lartetotherium sansaniense and

Deinotherium levius vel giganteum (Where possible maxima and
minima in 5'*0) were chosen. For *’Sr/*®Sr analysis, 1-10 mg of
pretreated enamel powder were prepared in a clean laboratory.
Isotope ratio measurements were performed on the Finnigan MAT
262 TIMS located at the Isotope Geochemistry Group of the
University of Tiibingen (Germany). Sample material was weighed
into Savillex"” Teflon beakers, dissolved with 0.5 ml HClon in
closed beakers on a hot plate at 80 °C overnight and subsequently
dried down. Samples were then redissolved in 2.5 M HCI for the
separation of Sr by conventional ion exchange chromatography
using quartz glass columns filled with BioRad AG 50 W-X12
(200400 mesh). Subsequent purification of Sr was achieved in
microcolumns filled with Eichrom” Sr-spec resin using the
HNO;-H,O technique. Sr separates were loaded with a Ta-
activator on Re single filaments and isotope ratio measurements
were performed in dynamic mode. Analytical mass fractionation
was corrected using a **Sr/*°Sr ratio of 8.375209 and exponential
law. External reproducibility for NBS SRM 987 (n=18) is
0.710254+20 (2sd) for the *’Sr/**Sr ratio. Total procedural blank
(chemistry and loading) was <1,475 pg contributing <1.5 % to the
total Sr and thus negligible.

Results and discussion
Sediment, plant, and invertebrate fossils

Sediment samples from different parts of the palacosol were
measured as an indicator for the degree of alteration in dentine
and bone of mammals. The samples showed a very wide range for
both 5'*0 and 5'*C (Fig. 1), probably originating from the strong
heterogeneity of the different components of the clastic sediment
with little carbonate cement. Similar discrepancies between sedi-
ment and diagenetically altered dentine were observed recently for
the locality of Howenegg (Tiitken et al. 2013, supplementary
data). Furthermore, the low CaCOs content (0.08-0.46 wt.%;
Appendix 1) hinders reliable measurements. The microbialite
shows lower values for 5'*C in comparison to the upper part of
the palaeosol, representing its host sediment. As biological frac-
tionation produces such negative shifts (Breitbart et al. 2009), the
values tentatively confirm the assumption of biogenic (bacterial)
build up (see also Havlik et al. 2014, this issue).

Due to assumed strong diagenetic alteration (bad preservation
already optically observable; soft, crumbly, high porosity, and rich
brownish colour), Celfis endocarps were also measured for 5'0
and 5"°C to be used as an indicator for the degree of alteration in
dentine and bone of mammals. The endocarps showed the highest
5'%0 values measured for the locality and were clearly distinct
from all values measured for large and small mammals (Fig. 1).
As diagenetic alteration can be a long-term process and even REE
uptake does not necessarily have to be restricted to early diagen-
esis (Herwartz et al. 2011 and 2013), these high values in Celtis
endocarps could be explained by later (perhaps modern)
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diagenetic alteration, to which the fruits are more susceptible as
they represent a system more easily accessible for diagenetic
fluids due to their bad preservation and higher porosity.
Recrystallisation of gastropod shells of Pseudidyla martingrossi
and Pleurodonte michalkovaci during diagenesis is unlikely as
they still possess an aragonitic shell composition (Havlik et al.
2014, this issue). Rudimental shells of the slug Limax sp. showed
calcite crystals. As the mineralogy of extant species of Limax is not
fully understood, it cannot be verified whether or not the slug
shells from Gratkomn are recrystallised (Havlik et al. 2014, this
issue). Therefore, '%0 and §6'°C values of Pseudidyla
martingrossi and Pleurodonte michalkovaci are considered more
reliable in preservation of the in vivo signals. Pseudidyla
martingrossi, Pleurodonte michalkovaci, and Limax sp. showed
similar §'0 and '*C values, but distinctly higher 5'*O than small
mammal whole teeth, large mammal dentine, other gastropod
remains (7estacella schuetti, opercula of indeterminate gastropod),
and sediment (Fig. 1). As little isotopic exchange can be assumed
for the non-recrystallised Pseudidyla martingrossi and Pleurodonte
michalkovaci, and the values clearly differ from tissues affected by
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diagenetic alteration (small mammal whole teeth and large mam-
mal dentine), the values for Pseudidyla martingrossi, Pleurodonte
michalkovaci, and Limax sp. are considered in vivo signals and fit
well with the observations of Yapp (1979), who showed that
modern land snails are enriched in '®0 in comparison to meteoric
water. As point and interval of time of gastropod shell
mineralisation depends on many climate variables, for example,
seasonality (Yanes et al. 2009), more measurements and a reliable
correlation in behaviour and habitat to modern relatives is needed
to gain further information. Food preference in terms of C; and C,
plant diet also cannot be easily reconstructed, due for example to
changes in metabolic rates (Balakrishnan and Yapp 2004).

Preservation of vertebrate remains

For small mammals, only bulk samples of enamel and dentine
could be gained due to the thin enamel cover in comparison to
large mammals. The authors are well aware that small mammal
513C and 5'%0¢o; values are more likely to be significantly
biased by diagenetic alteration. The measured small mammal
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values are therefore not used here for ecological interpretations,
but as indicators for diagenetic alteration of bone and dentine of
large mammals. Small mammal 5'3C and 6180(;03 values are
well in accordance with bone and dentine of large mammals.
Most likely both suffered from stronger isotopic exchange
during their early taphonomic history, as is also indicated by
the stronger influence of early diagenesis on the REE pattern
(Trueman et al. 2006; Trueman 2013; for discussion, see also
Havlik et al. 2014, this issue). *’Sr/**Sr ratios of small mam-
mals are well suited to reconstruct the local *’St/**Sr ratios in
bioavailable strontium during formation of the palacosol.

The total carbonate content in large mammal enamel sampled
for this work ranged between 4 and 6 % (Appendix 1) for all
measured samples and thus presented the same proportions as
expected in fresh, unaltered ungulate enamel (Rink and Schwarcz
1995; Julien et al. 2012). Hence, there are no signs of
recrystallisation that would have led to unusually low carbonate
values or of contamination by exogenous carbonate, which would
be indicated by high values (Koch et al. 1997; Ecker et al. 2013).
Furthermore, CaCO; content did not show any correlation with
either §'%0 or 6'°C values in the measured samples. Moreover,
large mammal enamel 5'%0 and 6"°C values are distinct from
corresponding measurements of dentine and bone, which clearly
overlap with small mammals and invertebrates (Fig. 1), indicating
to a certain degree a diagenetic alteration of dentine and bone.

Total REE contents (Havlik et al. 2014, this issue) of vertebrate
enamel range from below detection limit (0.07 ppm) up to
284 ppm comprising in general lower values than bone (values
between 988 and 13,484 ppm) and dentine (values between 4 and
12,510 ppm). Except for two higher values in ruminants,
Tethytragus sp. (GPIT/MA/2753: 172.34 ppm) and Euprox
furcatus (GPIT/MA/2414: 284.42 ppm), enamel REE values were
below 30 ppm and therefore indicate that tooth enamel from
Gratkomn was not affected by extensive diagenetic alteration (see
also discussions in Domingo et al. 2009; Havlik et al. 2014, this
issue). The higher values for the two ruminant specimens could be
explained by the enamel of ruminants being much thinner and
more fragile and therefore more susceptible to diagenetic alteration
in comparison to Rhinocerotidae and Deinotheriidae. In the case
of Euprox furcatus (GPIT/MA/2414), the sampled tooth is a non-
erupted molar and thus incomplete mineralisation could explain a
higher degree of REE uptake. An incisor of a small mammal with
very thin enamel (REE content of 0.079 ppm) and another rumi-
nant, Dorcatherium naui (REE content of 0.5281 ppm), showed
only small total REE contents. Diagenetic alteration and REE
uptake thus seems to be more complex, as also observed by
Herwartz et al. (2013). Due to a clear distinction of enamel and
dentine/bone values for all measured Fuprox furcatus and
Tethytragus sp. and the inconspicuous carbonate content, enamel
samples measured from these species are still considered to have
retained biogenic §'%0 and §"°C values.

In general, values of 5'"%0c0; have to be considered less
reliable than 5'3C values. Two teeth of one individual of

Dorcatherium naui (UMJGP 204662, m3 dex. and UMJGP
204665, m3 sin.) yielded a difference of 1.15 %o for 5'*0cos,
while the offset in 5">C was only 0.03 %o. As teeth of Middle
Miocene ruminants are smaller and possess thinner enamel
than, e.g. Late Miocene bovids or than proboscideans, teeth
cannot always be sampled at exactly the same tooth element in
order to gain the necessary sample amount. The offset of
%0co3 might thus result from a different amount of powder
from trigonid or talonid and therefore average different
mineralisation phases (see, e.g. different mineralisation phases
for different conids in Avishai et al. 2004).

Diet of large mammals (5'*0 and 5'°C)

Except for the tragulid Dorcatherium nawi (5"*C: min —11.8 %o,
mean —9.9 %o, max —5.2 %o), which was most likely a frugivore to
a certain degree, the 5'>C values of enamel of the other herbivo-
rous large mammal teeth displayed a range from —14 to —11.2 %o
and a mean value of —12.4 %o (Fig. 2). They are well within the
range of Miocene large mammalian herbivores predominantly
feeding in a mesic/woodland environment of a pure Cs ecosystem,
where a range from —14 to =9 %o is expected (Domingo et al.
2012). None of the taxa derived its diet from closed-canopy
conditions, as Miocene herbivores feeding in closed canopy con-
ditions should have §"3C values lower than —15/~14 %o (Tiitken
and Vennemann 2009; Domingo et al. 2012). Different values for
5'%0 and 6"C indicate different ecological niches among the large
mammals from Gratkom. The data fit well with a late Middle
Miocene faunal assemblage from this area and are well in accor-
dance with other Middle Miocene large mammal communities
from Europe (see, e.g. Tiitken et al. 2006; Tiitken and Vennemann
2009; Domingo et al. 2009, 2012).

Ruminantia
Euprox furcatus

The cervid Euprox fircatus generally shows lower values for 5'°C
(min: -13.6 %o, mean: —12.9 %o, max: —12 %o; n=5) and 5'%0
(min: —7.7 %o, mean: -6.7 %o, max: —5 %o; n=5) in comparison to
other taxa from Gratkorn, overlapping with the values of
M. flourensianus and the lower value of Listriodon splendens
(Fig. 2). The 5"C values of Euprox fircatus fit well with feeding
in a more closed, forested C; environment, and the lower values
for both 5"*C and 6"%0 to an ecological niche comprising mostly
subcanopy diet. Besides inhabiting an environment with less
evaporation, the low 5'%0 values for Euprox furcatus in compar-
ison to other large mammals could also indicate an obligate
drinking behaviour (Kohn 1996; Kohn et al. 1996). So far, no
isotopic measurements have been carried out on well-determined
material of Euprox furcatus. The Middle Miocene locality of
Steinheim, while yielding rich material of the species, also houses,
besides Euprox furcatus, a similar-sized cervid, Heteroprox larteti,
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(%0 V-PDB) for large mammals (enamel) from the Gratkom locality with
designated niches (after Domingo et al. 2012) in a predominantly Cs;

which cannot be distinguished from the former on isolated dental
material alone, and thus isotopic investigations on the locality only
allowed a measurement of mixed material (Euprox vel Heteroprox;
Tiitken et al. 2006). Comparing measurements of the genus
Heteroprox and indeterminate ruminants from other localities
(Sandelzhausen, Seegraben, Somosaguas, and Puente de Vallecas;
data from Tiitken et al. 2006; Domingo et al. 2009, 2012; and own
measurements) with the data from Gratkom (Fig. 3a), it can be
observed that Fuprox furcatus shows the lowest values, while
Heteroprox seems to be more enriched in both '*O and '*C. This
could be explained by less browsing in subcanopy environment
by the latter in comparison to Euprox furcatus but a higher degree
of mixed feeding. Merceron et al. (2012) also observed a high
degree of grazing in Heteroprox from Austria and Slovakia. How-
ever, occupation of different ecological niches is also dependent on
the ecological conditions and the number of co-occurring species,
as was shown in the study of DeMiguel et al. (2011) on the
microwear of ruminants in Middle Miocene deposits of Central
Spain. This might also explain the classification of Heteroprox
larteti as a browser in Middle Miocene localities from the NAFB
(North Alpine Foreland Basin; Kaiser and Rossner 2007), as it co-
occurred with another cervid, Dicrocerus elegans, which was
classified in their investigation as a mixed feeder. Although a
certain degree of variability concerning the degree of mixed
feeding in different ruminant assemblages can be expected,
DeMiguel et al. (2011) observed a higher intake of grass and
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vegetation. Trends from dense and cold/humid environment to more open
and warm/dry environment are indicated

tough vegetation in Heteroprox larteti than in Euprox furcatus
at a locality where both co-occurred. So far, there is not
enough data to define clearly distinct ecological niches for
Euprox furcatus (subcanopy browser) and Heteroprox ssp.
(more open environment mixed feeder). However, the results
from Gratkorn and literature data (Tiitken et al. 2006;
DeMiguel et al. 2011; Domingo et al. 2012), indicate that
the interpretation of Euprox furcatus as an inhabitant of drier
environments by Thenius (1950) is less likely. Euprox furcatus
rather represents a subcanopy browser and, in the case of co-
occurrence with Heferoprox larteti, might have displayed a
lower degree of mixed feeding than the latter.

Micromeryx flourensianus

A pure C; browsing diet can be assumed for the small
moschid Micromeryx flourensianus (5'>C=—12.3 %o; 6'30=
—5.4 %o; Fig. 2), possibly with slight enrichment by fruits
and seeds, resulting in the slightly higher values for 5'°C
and 5'®0 in comparison to most of the cervids (Tiitken and
Vennemann 2009). However, because the isotopic data of
Micromeryx flourensianus from Gratkorn were measured on
only one individual, speculations on diet are rather limited.
Merceron et al. (2007) and Merceron (2009) reconstructed
a browsing diet (with some affinities to mixed feeding)
with a significant intake of fruits and seeds for Micromeryx
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Fig.3 Mean values with total range of 8'*0¢c3 (%0 V-PDB) versus §'°C
(%o V-PDB) for large mammals (enamel) from the Gratkorn locality in
comparison with data from other Miocene localities (GK Gratkorn (own
measurements); Pa 3 Paracuellos 3 (from Domingo et al. 2012); PDV
Puente de Vallecas (from Domingo et al. 2012); St Steinheim a. A. (from
Tiitken et al. 2006); So Somosaguas (from Domingo et al. 2009); Gé
Goriach (own measurements); Sg Seegraben (own measurements); Sz
Sandelzhausen (from Tiitken and Vennemann 2009); Pa 5 Paracuellos 5
(from Domingo et al. 2012); Eik Eichkogel (own measurement); 7r
Trossing (own measurements); Md Mdodling (own measurements); Wo

flourensianus from Rudabanya and Atzelsdorf (both Late
Miocene). Isotopic data for Micromeryx flourensianus from
Steinheim (Tiitken et al. 2006) are well in accordance with
the measurements from Gratkorn (even more enriched in

Wolfau (own measurements); BdL Bruck an der Leitha (own measure-
ments)). a Ruminantia (E. Euprox; T Tethytragus, M. Micromeryx; D.
Dorcatherium, H. Heteroprox, Rum. Ruminantia); b Suidae (L. Listriodon,
P. Parachleuastochoerus; C. Conohyus); ¢ Rhinocerotidae (B.
Brachypotherium; L. Lartetotherium; A. Aceratherium; ssp. several spe-
cies; H. Hoploaceratherium; P. germanicus Prosantorhinus germanicus;
P. fahlbuschi Plesiaceratherium fahlbuschi); d Proboscidea (D.
Deinotherium;, G. Gomphotherium; P. Prodeinotherium); e Stratigraphic
age of different localities (4 Austria, D Germany, £ Spain, B Badenian)

13C; Fig. 3a). So far, isotopic data and microwear therefore
indicate a generally C; browsing diet for the small moschid
Micromeryx flourensianus with considerable intake of fruits
or seeds and occasional grazing.
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Tethytragus sp.

With a 5"°C value of —13.1 %o, a pure C5 browsing diet can be
assumed for Tethytragus sp.. Tt shows the highest value for 5'0
(—1.7 %o) observed in the large mammal fauna of the locality
(Fig. 2). In spite of the high REE content in this sample, and the
fact that the CO; component is more susceptible to diagenetic
alteration, the value is still considered to reflect a biological signal.
The CaCO; content is not significantly higher than in other
samples recorded, and the §'%0 value is not shifted in the direction
of dentine and sediment samples, as would be expected when a
considerable bias through diagenetic alteration has occurred. The
higher values for §'0 but similar values for §'°C in comparison
with other ruminants from Gratkorn could result from feeding on
top canopy plants exposed to higher evaporation, as was recon-
structed, for example, for Giraffokeryx (Giraffidae) from Pagalar
by Bocherens and Sen (1998) or for Germanomeryx
(Palacomerycidae) from Sandelzhausen by Tiitken and
Vennemann (2009). Other isotopic measurements for the same
genus (Domingo et al. 2012) also showed high 5'*0 values and
are well in accordance with the data from Gratkom (Fig. 3a).
Although small in body size in comparison to Giraffokeryx and
Germanomeryy, feeding on top canopy plants could have been
possible for Tethytragus due to a caprine-like postcranial adaptation
enabling climbing and tree-/rock-jumping to a certain degree (for
further discussion, see Aiglstorfer et al. 2014c, this issue). Kohler
(1993) could show adaptation to mountainous areas for
Tethytragus koehlerae from the Turkish locality of Candir (Middle
Miocene). Micro- and mesowear analysis on 7ethytragus from the
Middle Miocene of Central Spain display different degrees of
mixed feeding and grazing in their diet and even inconsistency
between the two different methods in one population was ob-
served (DeMiguel et al. 2011). As microwear is affected by the so-
called “last-supper-effect” (Grine 1986), the diet of Tethyragus
koehlerae might also depend on seasonal variations, which could
also have been the case at Gratkomn.

Dorcatherium naui

So far, no isotopic measurements have been published on Miocene
Tragulidae of Europe. The high 5"°C values of —11.8 to —5.2 %o
with a mean of —9.9 %o (n=4) for the tragulid Dorcatherium naui
were thus quite unexpected, as modermn Tragulidae inhabit the
undergrowth of forested environments (Rossner 2007), and other
species of the genus, like Dorcatherium crassum, have been
considered as indicators for wetland conditions. Therefore, one
would have expected 5"°C and 5'®0 values typical for closed
canopy or at least subcanopy feeding in a more humid environ-
ment for Dorcatherium naui from Gratkom. In contrast to this
expectation, this taxon yielded 5'*C values clearly higher than for
all other large mammals from the locality (Fig. 2). 5'*0 values are
instead only slightly higher than in cervids (min: —5.4 %., mean:
—4.9 %o, max: —4 %o). These values can be explained by a certain
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amount of mixed feeding (leaves and grass) or by ingestion of a
considerable amount of fiuit. In investigations on a modern large
mammal assemblage from the Ituri Forest (Democratic Republic
of Congo), tragulids showed higher values for 5'*C but similar
ones for §'%0, and nested well within canopy frugivores (Cerling
et al. 2004). Moreover, Codron et al. (2005) could show that tree
fruits were significantly '*C-enriched, by about 1.5-2 %o on
average, compared to tree leaves. The mean enrichment of 3 %o
for 8"*C observed at Gratkorn is slightly higher but would still fit
well with the ingestion of a considerable amount of fruit by
Dorcatherium naui. However, an exclusively frugivore diet for
the species cannot be assumed, as the climate (seasonality, MAP
of 486+252 mm, and MAT of ~15 °C; Gross et al. 2011) makes
an all-year fiuit supply for the area around Gratkorn most unlikely.
Today, the fruit supply is not high enough even in evergreen
forests for a strictly frugivore feeding of terrestrial frugivores all
year (Smythe 1986). The assumption of Sponheimer and Lee-
Thorp (2001) that frugivores should be more depleted in '*O than
folivores can only be sustained under the presumption that the
animals fed from the same plant/tree, since besides intraspecific
differences (leaves vs. fruits), interspecific differences were also
observed in the enrichment in '*0O by Dunbar and Wilson (1983).
As it is most likely that the leaf-browsing cervid Euprox furcatus
and the browsing and facultative frugivorous tragulid
Dorcatherium naui did not feed exclusively on the same plants,
the different values in & "°C and the similar values in 5'°O fit well
with the proposed differences in ecological niches. Measurements
on other species of the genus, D. crassum and D. vindebonense,
from an intramontane basin (early Middle Miocene locality of
Goriach; Austria; ~14.5 Ma + 0.3 Ma) also showed generally
slightly higher 5'*C values than other ruminants (Fig. 3a), which
could also result from ingestion of a considerable amount of fiuits.
Furthermore, works based on microwear analyses reconstructed a
frugivore browsing diet for D. naui from the Late Miocene locality
of Atzelsdorf (Austria; 11.1 Ma; Merceron 2009) and for
Dorcatherium crassum from Goriach and other Austrian
intramontane basins (Merceron et al. 2012), while Dorcatherium
vindebonense was termed a generalist, comparable to the modem
red deer by Merceron et al. (2012). As we cannot exclude a certain
amount of mixed feeding (browsing and grazing on C; vegetation)
from our measurements at the locality of Goriach, and as §'%0
values of the different specimens from the locality show quite a
wide range, occupation of more diverse ecological niches among
the different Dorcatherium specimens with a considerable amount
of C5 grass ingestion do not seem unlikely.

Since there is so far no evidence for the existence of a
relevant amount of grass in the vegetation of Gratkorn, and
keeping in mind the observations of Merceron (2009), we
assume fruit ingestion rather than grazing to be more likely
for Dorcatherium naui from Gratkorn. In addition, the mor-
phology of the species’ incisor arcade rather points to ingestion
of fruits to a certain degree more than to grazing (for further
discussion, see Aiglstorfer et al. 2014c, this issue). On the other
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hand, a mixed diet was reconstructed for Dorcatherium
guntianum from the NAFB by Kaiser and Rdssner (2007). It
is, together with Dorcatherium naui, part of a phylogenetic
lineage differing from the more bunodont Dorcatherium
crassum by more selenodont and higher crowned teeth (for
further discussion, see Aiglstorfer et al. 2014c, this issue).
Ungar et al. (2012) also observed mixed feeding for Early
Miocene Tragulidae from Africa. In summary, for the moment,
we therefore consider Dorcatherium naui from Gratkorn a
browser with facultative frugivory, but we cannot completely
rule out a certain amount of mixed feeding.

In addition to different diets, different digestion systems
between Dorcatherium and higher ruminants could also ex-
plain differences in isotopic ratios. In modern tragulids, for
example, the rumen, where fermentation takes place in sym-
biosis with bacteria, is relatively small compared to more
derived ruminants (Réssner 2007). Slightly higher 5'%0
values could furthermore be triggered by less dependency on
drinking than observed in the obligate drinker Euprox
furcatus. Modern tragulids have the lowest water intake of
modern ruminants in the tropics (Rossner 2007).

Suidae

Listriodon splendens (min: —12.4 %o, mean: —11.9 %o, max:
—11.4 %o; n=2) and Parachleuastochoerus steinheimensis
(—11.4 %o) show similar values for 5'C, well in accordance
with other browsing taxa. In contrast to §'°C, 'O values of
Listriodon splendens (min: —5.8 %o, mean: —4.2 %o, max:
—2.6 %o; n=2) and of Parachleuastochoerus steinheimensis
(=7.9 %o) are quite distinct (Fig. 2). Because of the Tapir-like
lophodont dentition, Listriodon splendens has been traditionally
considered a specialised folivore (van der Made 1996). Isotopic
measurements from Gratkorn fit well within this ecological niche
and higher values in 5'®0 indicate a certain amount of mixed
feeding or ingestion of maybe upper canopy fiuit, more enriched
in '*O (Nelson 2007). This is well in accordance with ecological
interpretations based on morphology by van der Made et al.
(2014). The distinctly lower 5'*0 values, but similar §'°C values
in Parachleuastochoerus steinheimensis from Gratkorn, could be
explained by digging for roots, as these are depleted in §'%0 in
comparison to leaves, while 5'°C values are similar (Sponheimer
and Lee-Thorp 2001). While incisor and general jaw morpholo-
gy makes consumption of roots for the genus Listriodon unlikely
(van der Made 1996 and references therein; van der Made et al.
2014), for the subfamily Tetraconodontinae, to which
Parachleuastochoerus is assigned, a certain amount of root
consumption is assumed due to dental morphology (Hiinermann
1999; van der Made et al. 2014). Comparing isotopic measure-
ments from Gratkorn with literature data from other Miocene
localities (Tiitken et al. 2006; Domingo et al. 2009, 2012;
Fig. 3b) different ecological niches for Listriodon splendens
and for tetraconodontid suids (Parachleuastochoerus

steinheimense and Conohyus simorrensis) are verified and seem
to be rather independent from climate and stratigraphic level.
While Listriodon splendens plots well in a mostly browsing diet
with occasional input of fruits or grass, 5'*0 values in
tetraconodontid suids are usually more negative, indicating a
considerable amount of rooting in their diet.

Perissodactyla
Lartetotherium sansaniense

The 5"*C values of the rhinocerotid Lartetotherium sansaniense
(min: —11.7 %o, mean: —11.6 %o, max: —11.2 %o) are slightly
higher than in the cervid Euprox fircatus or the proboscidean
Deinotherium, though still nesting well within the range expected
for feeding in a mesic/woodland Cs-dominated environment
(Fig. 2). Titken et al. (2006) and Tiitken and Vennemann (2009)
observed higher &'>C values for Lartetotherium sansaniense from
Sandelzhausen and Steinheim a. A. in comparison to other rhino
taxa, and therefore assumed feeding in more open environment for
the species. This is well in accordance with the 5'°C values and the
slightly higher 'O values (min: —5 %o, mean: —4.8 %o, max:
—4.2 %o) in comparison to other taxa observed in Lartetotherium
sansaniense from the Gratkorn locality. Comparing different
values for Miocene Rhinocerotidae from literature and our own
measurements (Fig. 3¢), it can be observed that, independently of
age and climate, Lartetotherium sansaniense usually shows higher
values for 5'°C and also frequently for 5'®0 than other
Rhinocerotidae. The two teleoceratini, the large rhinocerotid
Brachypotherium from Steinheim a. A. (data from Tiitken et al.
2006) and Eichkogel (own measurements) and the smaller
Prosantorhinus germanicus from Sandelzhausen (data from
Tiitken and Vennemann 2009), generally display lower 83C
values. The high 6'°C values for Brachypotherium (?) from
Trossing could also be explained by a wrong taxonomic identifi-
cation of the specimen, as it comprises only fragments which
cannot be identified with certainty. Aceratini (Plesiaceratherium
fahlbuschi, Hoploaceratherium sp., Aceratherium ssp. (including
Alicornops simorrense); Fig. 3c; data from Tiitken et al. 2006;
Tiitken and Vennemann 2009; own measurements) display
values inbetween the other two groups. Though we are well
aware that more data are needed to reconstruct ecological
adaptations for the different rhinocerotid genera and species,
the data presented here already indicate different ecological
niches with Brachypotherium and other teleoceratini feeding
in a more closed mesic/woodland environment (also fitting
well to the graviportal gait and limb shortening; Heissig
1999), while Lartetotherium sansaniense was feeding in more
open environment and aceratini occupied niches inbetween,
which is also well in accordance with other considerations on
the ecology of the different taxa (Heissig 1999; Bentaleb et al.
2006; Tiitken and Vennemann 2009).
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Since serial sampling of thinocerotid teeth has proved to be an
indicator for seasonal variability (MacFadden and Higgins 2004;
Zin-Maung-Maung-Thein et al. 2011), the fragmented lower
second molar (m2) was sampled along the axis of the tooth from
the base of enamel to occlusal surface (height about 2 cm;
Fig. 4a). Unfortunately, both intra-tooth ranges, A'>C (0.5) and
A"0 (0.8), are too small to infer any seasonality and *’Sr/*°Sr
values do not show any significant variations. Since a clear
seasonality for the region around Gratkom is indicated by sedi-
mentology and ectothermic vertebrates (Gross et al. 2011), and
by serial measurements on Deinotherium levius vel giganteum
(see discussion below), the height of the tooth fragment might be
too short to represent a time interval recording seasonal variation.

Proboscidea
Deinotherium levius vel giganteum

Values for §'*C for Deinotherium levius vel giganteum are the
most negative among the large mammals from Gratkorn (min:
—14 %0, mean: —13.8 %o, max: —13.6 %o), but are still clearly in
the range for a Cs-dominated mesic/woodland environment.
5'%0 values are generally higher (min: —5.8 %o, mean:
—4.8 %o, max: —4.1 %o) than for the cervid Euprox furcatus,
but overlap more with Listriodon splendens and Dorcatherium
naui. The data fit well with browsing on top canopy leaves
(Bocherens and Sen 1998).

Comparing the values for 5'°C and §'°0 of Deinotherium
levius vel giganteum from Gratkorn with other measurements on
Proboscidea from different Miocene localities of different strati-
graphic levels (see “Material” for details), it can be observed that
they nest well among the deinotheriidae (Fig. 3d), which gener-
ally show values typical for browsing in a C; dominated mesic/
woodland environment. Only one deinothere from Bruck an der
Leitha (Austria, early Sarmatian) displayed higher 5'>C values,
which could result from feeding in a more open environment. In
contrast, Gomphotheres (data from Tiitken and Vennemann
2009; Domingo et al. 2009, 2012) usually show higher §'C
values, indicating a higher degree of mixed feeding and feeding
in a more open environment, though still in Cs;-dominated veg-
etation. Harris (1996) also described strict feeding on C; vegeta-
tion for African deinotheres through their evolutionary history,
while other proboscideans like gomphotheres switched from Cj
to C4 during the Late Miocene (Harris 1996; Huttunen 2000;
Lister 2013). Although this change seems not to have taken place
in Europe (Domingo et al. 2013), clearly different ecological
niches for deinotheres (browsing in mesic/woodland environ-
ment) and gomphotheres (mixed feeding in more open environ-
ment) can be observed, fitting well to the lophodont Tapir-like
dentition in deinotheres in contrast to a more bunodont dentition
in gomphotheres.

Along the axis of two fragmented teeth, a series of samples
was measured for 5'%0 and 6"3C to check for seasonal variation
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(Fig. 4b). The teeth are a lower fourth premolar (p4; at least 3/4
of the original tooth crown height preserved) and a fragment of
an unidentified molar (Mx/mx; at least 1/2 of the original tooth
crown height preserved; due to enamel thickness, affiliation to a
premolar is less likely). From general taphonomy (Aiglstorfer
et al. 2014a, this issue; Havlik et al. 2014, this issue), finding
position, and preservation of the two teeth, they most likely
belong to one individual. However, since the tooth position of
the molar cannot be determined, the sequence of mineralisation
and eruption of the two teeth cannot be given. As tooth forma-
tion in the genus Deinotherium extends over at least 1.5 years
(Macho et al. 2003), a record of at least two seasons was
expected for each tooth. 5'°C values are quite constant and show
little variation [intra-tooth range: A'’C (p4)=0.4; A'°C
(Mx/mx)=0.4]. In contrast, both teeth (Fig. 4b) exhibit
one clear maximum (p4: —4.1 %o, Mx/mx: —4.1 %0) and
one clear minimum (p4: —5.8 %o, mx/Mx: —5.7 %o) each
for 5'80 and intra-tooth ranges of 1.7 [A'®0 (p4)] and
1.6 [A"0 (Mx/mx)].

Similar variations in 5'°C, were observed in plant material
from two localities in North America, comprising one cold desert
biome (MAT 8 °C; MAP 290 mm; main precipitation in winter,
spring/autumn) and one desert scrub to grassland (MAT 17 °C;
MAP 300 mm; main precipitation in summer) and attributed to
water stress and senescent leaves of plants by Hoppe et al.
(2004). Considering additional dampening of diet §'>C values
due to enamel maturation in herbivores (Passey and Cerling
2002), seasonality in 6'°C values of the diet could thus be
expected. Unfortunately, the 5"°C values display no clear sea-
sonal pattern and are not concordant with the stronger and
seasonal variation of 5'®0, implying no seasonal diet change
for Deinotherium levius vel giganteum but would fit to a more
generalistic and unselective feeding strategy (Tiitken and
Vennemann 2009). However, the generally quite low 8'13C
values point to an exclusively browsing diet. In order to ascertain
if 5'®0 variation was induced by seasonality of the local climate
or seasonal migration of the animal, *’Sr/**Sr measurements
were accomplished on the samples displaying maxima and
minima for §'¥0. Though *’St/**Sr values differ distinctly from
the local fauna (see discussion below), no significant intra-tooth
variation could be observed and thus 5'%0 variation more likely
represents seasonality than extensive migration of the animal at
the time of enamel mineralisation. As each tooth displays one
maximum (summer) and one minimum (winter), a 1-year cycle
would be recorded by combining the two patterns, under the
assumption that both teeth belong to the same individual.

Provenance analysis (*’St/*°Sr)

As mentioned above, 3’St/**Sr values of fossil bones and teeth
are useful to detect the provenance of different faunal elements in
a taphocoenosis. Small mammals as well as invertebrates more
likely represent the locally bioavailable 'St/*°Sr ratio (Hoppe
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et al. 1999; Bentley 2006; Tiitken and Vennemann 2009; Maurer
etal. 2012). Although Maurer et al. (2012) observed that modern
snail shells can be biased concerning the locally bioavailable
87S1/%Sr ratio, at Gratkorn they are well in accordance with the
small mammals and the microbialite, and thus represent the local
signal, which is on average 0.711232 and ranges from 0.711031
to 0.711366 (Fig. 5). Among the large mammals, only
Tethytragus sp. (¥'St/*°Sr: 0.711472) and Dorcatherium naui
(®"sr/*Sr: 0.711261) did not show significant differences from
the local ratio and are interpreted as more or less permanent
residents of the area around Gratkorn. Although small mammal
samples suffered from a considerable diagenetic overprint, we
still consider their ®’St/*Sr ratio as a local signal of the Gratkorn
locality representative for the time of sediment deposition (in-
cluding early diagenesis). Small mammals, microbialite, gastro-
pods, Tethytragus sp. and Dorcatherium naui are well in agree-
ment concerning their *’St/**Sr ratios. It could be argued that the

—— D. levius vel giganteum 880 (%., V-PDB)

unidentified molar and the lower fourth premolar of Deinotherium levius
vel giganteum from Gratkorn (b)

sample of Tethytragus sp. with its high REE content might also
have been influenced by diagenesis. However, its 5'%0 and §'°C
values are not shifted in the direction of the small mammals, as
would be expected in a case of strong alteration. Furthermore,
the non-recrystallised gastropod, Pleurodonte michalkovaci, and
the sample of Dorcatherium naui, are less likely to be consider-
ably influenced by diagenesis (as mentioned above) and show
similar values for ¥’Sr/*Sr.

The suid Listriodon splendens (0.710888) and the rhinocerotid
Lartetotherium sansaniense (mean °’St/*°Sr=0.710633) showed
slightly lower values, while ®’Sr/**Sr values for Euprox firrcatus
(®"Sr/*Sr=0.710249) and Deinotherium levius vel giganteum
(mean *’St/*Sr (p4)=0.709271 and mean *’St/*°Sr (Mx/mx)=
0.709234) are considerably shifted to lower values. These taxa
ingested food and water in areas where *’Sr/*Sr ratios of bio-
available strontium were lower. The values are shifted in the
direction of marine carbonates (Fig. 5), which in general show
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values from 0.7076 to 0.7092 depending on the composition of the
sea water and the age (McArthur et al. 2001; Tiitken 2010).
Increased total Sr content (Appendix 1) in contrast to other species
might have biased the ¥'Sr/**Sr value for Deinotherium levius vel
giganteum to a certain degree, but as no correlation can be
observed between *’St/*°Sr values and Sr content, taking into
consideration the other large mammals, the decreased value for
Deinotherium levius vel giganteum is still considered reliable, but
treated with caution. *’Sr/*Sr values for Badenian to early Sar-
matian (16—12.2 Ma) marine shark teeth and foraminifera from the
nearby shallow marine Vienna Basin showed values from
0.708741 to 0.708893 (Hagmaier 2002; Kocsis et al. 2009), while
late Karpatian to early Badenian localities from the more open
Pannonian basin showed values of 0.708814 and 0.708895
(Kocsis et al. 2009). The Gratkorn locality is located in a satellite
basin of the Styrian basin (Gross et al. 2011). As the latter was
connected to both the more open Pannonian Basin and the
shallower Vienna Basin during marine sedimentation in Badenian
and early Sarmatian times, similar values are thus expected for the
Styrian Basin. Due to a marginal marine situation at this time for
the area south of Gratkorn, an enhanced terrestrial clastic sediment

input could have shifted the normal marine ratios to higher values.
A terrestrial influence is documented by early Sarmatian marine
pelites with intercalated gravels and sands in a drill core less than
20 km south of Gratkorn (Gross et al. 2007). Thus, Euprox
furcatus and occasionally also Listriodon splendens and
Lartetotherium sansaniense could have ingested food and water
in areas where bioavailable *’Sr/*°Sr resulted from these underly-
ing bedrocks, while Deinotherium levius vel giganteum could have
inhabited areas in the Styrian Basin with underlying marine sed-
iments showing less terrestrial input.

In contrast to all other species, *’St/**Sr values (0.712732) for
Parachleuastochoerus steinheimensis are distinctly higher than
the local mean. Therefore, a different habitat is assumed for this
species, with bedrocks yielding much higher *’Sr/*°Sr values in
bioavailable strontium than can be observed in Gratkorn. The
Gratkorn locality is in close vicinity to the Eastern Alpine Moun-
tain Chain, which consists to a considerable extent of Palacozoic
felsic magmatites and metamorphites. Palaecozoic granites and
mica schists display higher *’Sr/**Sr values (Bentley 2006;
Tiitken 2010) and thus could be a possible bedrock for the habitat
of Parachleuastochoerus steinheimensis.

0.713
[ ]
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0.712 (Voerkelius et al. 2010)
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S W—
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&
% A
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5
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[VB, PB] (Kocsis et al.
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® Deinotherium levius vel giganteum

Fig. 5 *'St/*°Sr isotope compositions from Gratkorn versus body mass
(mammals only). Gastropods, the microbialite and small mammals (com-
plete teeth) represent the local ratio for the locality. Most of the large
mammals (enamel), especially with larger body mass, show different
values from the local ratio due to migration (maybe provoked by limita-
tion of available biomass at the locality). The values are compared to the
modern natural mineral water values from Graz (data from Voerkelius
et al. 2010), to the range for marine carbonates in general (data from
Tiitken 2010) and to ratios from measurements on shark teeth and
foraminifera from late Karpatian to early Sarmatian sediments from
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® Deinotherium levius vel giganteum

Austria (Bad Voslau, Leithakalk, Siebenhirten) and Hungary (Danitz-
puszta and Himeshaza) (data from Kocsis et al. 2009; Hagmaier 2002; VB
Vienna Basin; PB Pannonian Basin). Bodymass estimations follow
Aiglstorfer et al. (2014c, this issue) for ruminants; Costeur et al. (2012)
for Listriodon splendens and Prolagus oeningensis; Aiglstorfer et al.
(2014a, this issue, and citations therein) for Deinotherium levius vel
giganteum; and Fortelius (2013 (NOW database)) for
Parachleuastochoerus steinheimensis; and is oriented for Schizogalerix
voesendorfensis on the value for Schizogalerix sp. given by Merceron
etal. (2012)
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Summing up, no detailed migrational history can be recon-
structed from ®’Sr/*’Sr ratios of the large mammals from
Gratkorn due to limited data. However, it can be observed that,
besides the more or less local residents Tethytragus sp. and
Dorcatherium naui, the other large mammals, Listriodon
splendens (only to a minor degree), Lartetotherium
sansaniense, Euprox furcatus, Deinotherium levius vel
giganteum, and Parachleuastochoerus steinheimensis, lived in
areas with lower or higher ®’St/*°Sr ratios in bioavailable
strontium, at least temporarily. Especially the larger herbivores,
such as the proboscidean or the rhinocerotids (see Fig. 5 for
bodymasses), were dependent on a large amount of daily food
supply. A limitation in available biomass (at least during some
seasons) at the Gratkorn locality might be an explanation for
migration of the larger mammals. However, for small mammals
and the maybe better adapted Dorcatherium naui and
Tethytragus sp., food supply could have been enough during
all seasons. With slightly higher values, the latter might have
occasionally fed on bedrocks with higher values as well.

Conclusions

In summary, the herbivorous large mammals from Gratkorn
were feeding on an exclusively C; vegetation and predomi-
nantly browsing in mesic/woodland environments. The isotope
data of large mammal enamel presented here (for some taxa,
comprising the first isotope data so far) indicate occupation of
different ecological niches. Since the data from Gratkorm are
well in accordance with measurements from other Miocene
localities from different stratigraphic levels and with different
climatic conditions (Tiitken et al. 2006; Domingo et al. 2009,
2012; Tiitken and Vennemann 2009,) relatively stable ecolo-
gical niches can be reconstructed for some taxa.

Significantly higher 8'*C values in Dorcatherium naui than
displayed by the rest of the large mammal fauna from Gratkorn
point to an ingestion of more fruits in its diet. The small
moschid Micromeryx flourensianus could also have ingested
fruits from time to time. The cervid Fuprox furcatus represents a
typical subcanopy browser and thus preferably occupied a
different niche than the cervid Heferoprox (not recorded at
Gratkorn), which was more adapted to an open environment.
In spite of its small size, the bovid Tethytragus sp. represents a
canopy browser (with a possibly caprine-like postcranial adap-
tation). The proboscidean Deinotherium levius vel giganteum
browsed on canopy plants in the higher parts of an exclusively
C; vegetation, in contrast to the more bunodont proboscidean
Gomphotherium, which has not so far been recorded from
Gratkorn, and exhibited a more mixed feeding diet. The latter
proboscidean genus is recorded for Austria at the time of the
Gratkorn locality. Its absence from the mammal assemblage
from Gratkorn could thus have ecological reasons. Generally
higher values for 5'0 and 'C in Lartetotherium sansaniense

indicate feeding in more open environments, as has also been
observed for other localities (Tiitken et al. 2006; Tiitken and
Vennemann 2009). Listriodon splendens was a typical brows-
ing taxon with considerable input of fruits and maybe some
grass in its diet, while the other suid from Gratkorn,
Parachleuastochoerus steinheimensis, showed a certain degree
of rooting as part of its diet. These different ecological niches
for Listriodontinae and Tetraconodontinae seem to be quite
stable, as similar values can be observed for different localities
with different stratigraphic ages. Serial measurements on the
teeth of Deinotherium levius vel giganteum show a seasonal
variation at this time for the wider area around Gratkorn, fitting
well to sedimentology and climate reconstructions based on
ectothermic vertebrates from the Gratkorn locality itself (Gross
et al. 2011; Bohme and Vasilyan 2014, this issue). Distinct
differences in *’Sr/*°Sr values indicate that not all large mam-
mals were permanent residents of the area around Gratkorn, but
inhabited a wider area, most likely including the Styrian Basin
and the palacozoic and metamorphic basement in the Eastern
Alps. Biomass at the locality itself was most likely limited, and
thus maybe not enough food was available for the largest
herbivores during all seasons. Therefore, it can be assumed that
the largest mammals were migrating to a certain degree.

We can reconstruct for the wider area around the Gratkorn
locality an ecosystem with predominantly C; vegetation in a
semi-arid, subtropical climate with distinct seasonality and too
little precipitation for a closed canopy woodland. It provided
enough diversity in plant resources to allow occupation of
different niches, from subcanopy browsing and rooting to top
canopy browsing, plus a certain degree of frugivory and mixed
feeding for diverse large mammals. This or similar organisation
patterns can be observed in other European Miocene localities
(Tiitken et al. 2006; Tiitken and Vennemann 2009; Domingo
et al. 2009, 2012), and seem to be affected only to a minor
degree by climatic conditions but rather represent a typical
niche partitioning of large mammals in a Middle Miocene
ecosystem.
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